36 research outputs found

    Scaling Machine Learning Systems using Domain Adaptation

    Get PDF
    Machine-learned components, particularly those trained using deep learning methods, are becoming integral parts of modern intelligent systems, with applications including computer vision, speech processing, natural language processing and human activity recognition. As these machine learning (ML) systems scale to real-world settings, they will encounter scenarios where the distribution of the data in the real-world (i.e., the target domain) is different from the data on which they were trained (i.e., the source domain). This phenomenon, known as domain shift, can significantly degrade the performance of ML systems in new deployment scenarios. In this thesis, we study the impact of domain shift caused by variations in system hardware, software and user preferences on the performance of ML systems. After quantifying the performance degradation of ML models in target domains due to the various types of domain shift, we propose unsupervised domain adaptation (uDA) algorithms that leverage unlabeled data collected in the target domain to improve the performance of the ML model. At its core, this thesis argues for the need to develop uDA solutions while adhering to practical scenarios in which ML systems will scale. More specifically, we consider four scenarios: (i) opaque ML systems, wherein parameters of the source prediction model are not made accessible in the target domain, (ii) transparent ML systems, wherein source model parameters are accessible and can be modified in the target domain, (iii) ML systems where source and target domains do not have identical label spaces, and (iv) distributed ML systems, wherein the source and target domains are geographically distributed, their datasets are private and cannot be exchanged using adaptation. We study the unique challenges and constraints of each scenario and propose novel uDA algorithms that outperform state-of-the-art baselines

    Data4Good: Designing for Diversity and Development

    Get PDF
    We are witnessing unprecedented datafication of the society we live in, alongside rapid advances in the fields of Artificial Intelligence and Machine Learning. However, emergent data-driven applications are systematically discriminating against many diverse populations. A major driver of the bias are the data, which typically align with predominantly Western definitions and lack representation from multilingually diverse and resource-constrained regions across the world. Therefore, data-driven approaches can benefit from integration of a more human-centred orientation before being used to inform the design, deployment, and evaluation of technologies in various contexts. This workshop seeks to advance these and similar conversations, by inviting researchers and practitioners in interdisciplinary domains to engage in conversation around how appropriate human-centred design can contribute to addressing data-related challenges among marginalised and under-represented/underserved groups

    Libri-Adapt: A New Speech Dataset for Unsupervised Domain Adaptation

    Full text link
    This paper introduces a new dataset, Libri-Adapt, to support unsupervised domain adaptation research on speech recognition models. Built on top of the LibriSpeech corpus, Libri-Adapt contains English speech recorded on mobile and embedded-scale microphones, and spans 72 different domains that are representative of the challenging practical scenarios encountered by ASR models. More specifically, Libri-Adapt facilitates the study of domain shifts in ASR models caused by a) different acoustic environments, b) variations in speaker accents, c) heterogeneity in the hardware and platform software of the microphones, and d) a combination of the aforementioned three shifts. We also provide a number of baseline results quantifying the impact of these domain shifts on the Mozilla DeepSpeech2 ASR model.Comment: 5 pages, Published at IEEE ICASSP 202

    Chronic-Pain Protective Behavior Detection with Deep Learning

    Get PDF
    In chronic pain rehabilitation, physiotherapists adapt physical activity to patients' performance based on their expression of protective behavior, gradually exposing them to feared but harmless and essential everyday activities. As rehabilitation moves outside the clinic, technology should automatically detect such behavior to provide similar support. Previous works have shown the feasibility of automatic protective behavior detection (PBD) within a specific activity. In this paper, we investigate the use of deep learning for PBD across activity types, using wearable motion capture and surface electromyography data collected from healthy participants and people with chronic pain. We approach the problem by continuously detecting protective behavior within an activity rather than estimating its overall presence. The best performance reaches mean F1 score of 0.82 with leave-one-subject-out cross validation. When protective behavior is modelled per activity type, performance is mean F1 score of 0.77 for bend-down, 0.81 for one-leg-stand, 0.72 for sit-to-stand, 0.83 for stand-to-sit, and 0.67 for reach-forward. This performance reaches excellent level of agreement with the average experts' rating performance suggesting potential for personalized chronic pain management at home. We analyze various parameters characterizing our approach to understand how the results could generalize to other PBD datasets and different levels of ground truth granularity.Comment: 24 pages, 12 figures, 7 tables. Accepted by ACM Transactions on Computing for Healthcar

    Management of uveal tract melanoma: A comprehensive review

    Get PDF
    AbstractUveal tract melanoma is the most common primary intraocular malignancy in adults, accounting for about 5–10% of all the melanomas. Since there are no lymphatic vessels in the eye, uveal melanoma can only spread hematogenously leading to liver metastasis. A wide variety of treatment modalities are available for its management, leading to dilemma in selecting the appropriate therapy. This article reviews the diagnostic and therapeutic modalities available and thus, can help to individualize the treatment plan for each patient

    Mic2Mic: Using Cycle-Consistent Generative Adversarial Networks to Overcome Microphone Variability in Speech Systems

    Full text link
    Mobile and embedded devices are increasingly using microphones and audio-based computational models to infer user context. A major challenge in building systems that combine audio models with commodity microphones is to guarantee their accuracy and robustness in the real-world. Besides many environmental dynamics, a primary factor that impacts the robustness of audio models is microphone variability. In this work, we propose Mic2Mic -- a machine-learned system component -- which resides in the inference pipeline of audio models and at real-time reduces the variability in audio data caused by microphone-specific factors. Two key considerations for the design of Mic2Mic were: a) to decouple the problem of microphone variability from the audio task, and b) put a minimal burden on end-users to provide training data. With these in mind, we apply the principles of cycle-consistent generative adversarial networks (CycleGANs) to learn Mic2Mic using unlabeled and unpaired data collected from different microphones. Our experiments show that Mic2Mic can recover between 66% to 89% of the accuracy lost due to microphone variability for two common audio tasks.Comment: Published at ACM IPSN 201

    A Taxonomy of Noise in Voice Self-reports while Running

    Get PDF
    Smart earables offer great opportunities for conducting ubiquitous computing research. This paper shares its reflection on collecting self-reports from runners using the microphone on the smart eSense earbud device. Despite the advantages of the eSense in allowing researchers to collect continuous voice self-reports anytime anywhere, it also captured noise signals from various sources and created challenges in data processing and analysis. The paper presents an initial taxonomy of noise in runners’ voice self-reports data via eSense. This is based on a qualitative analysis of voice recordings based on eSense’s microphone with 11 runners across 14 in-the-wild running sessions. The paper discusses the details and characteristics of the observed noise, the challenges in achieving good-quality self-reports, and opportunities for extracting useful contextual information. The paper further suggests a noise-categorization API for the eSense or other similar platforms, not only for the purpose of noise-cancellation but also incorporating the mining of contextual information

    Leveraging Activity Recognition to Enable Protective Behavior Detection in Continuous Data

    Get PDF
    Protective behavior exhibited by people with chronic pain (CP) during physical activities is the key to understanding their physical and emotional states. Existing automatic protective behavior detection (PBD) methods rely on pre-segmentation of activities predefined by users. However, in real life, people perform activities casually. Therefore, where those activities present difficulties for people with chronic pain, technology-enabled support should be delivered continuously and automatically adapted to activity type and occurrence of protective behavior. Hence, to facilitate ubiquitous CP management, it becomes critical to enable accurate PBD over continuous data. In this paper, we propose to integrate human activity recognition (HAR) with PBD via a novel hierarchical HAR-PBD architecture comprising graph-convolution and long short-term memory (GC-LSTM) networks, and alleviate class imbalances using a class-balanced focal categorical-cross-entropy (CFCC) loss. Through in-depth evaluation of the approach using a CP patients' dataset, we show that the leveraging of HAR, GC-LSTM networks, and CFCC loss leads to clear increase in PBD performance against the baseline (macro F1 score of 0.81 vs. 0.66 and precision-recall area-under-the-curve (PR-AUC) of 0.60 vs. 0.44). We conclude by discussing possible use cases of the hierarchical architecture in CP management and beyond. We also discuss current limitations and ways forward.Comment: Submitted to PACM IMWU
    corecore